Search results for "Locally convex quasi C∗-normed algebra"
showing 1 items of 1 documents
Locally convex quasi $C^*$-normed algebras
2012
Abstract If A 0 [ ‖ ⋅ ‖ 0 ] is a C ∗ -normed algebra and τ a locally convex topology on A 0 making its multiplication separately continuous, then A 0 ˜ [ τ ] (completion of A 0 [ τ ] ) is a locally convex quasi ∗-algebra over A 0 , but it is not necessarily a locally convex quasi ∗-algebra over the C ∗ -algebra A 0 ˜ [ ‖ ⋅ ‖ 0 ] (completion of A 0 [ ‖ ⋅ ‖ 0 ] ). In this article, stimulated by physical examples, we introduce the notion of a locally convex quasi C ∗ -normed algebra, aiming at the investigation of A 0 ˜ [ τ ] ; in particular, we study its structure, ∗-representation theory and functional calculus.